The Laloy & Massard model: improvements and limitations – How do numerics help us in making better and useful experiments

<u>É. Canot, R. Delannay, A. Cordero, R. March</u>

Workshop MODNUM – 22 may 2013 – Beirut, Lebanon 1/20

The heat equation

$$\rho C_p \frac{\partial T}{\partial t} + V \cdot \nabla T = \operatorname{div} \left(\lambda(\mathbf{x}) \nabla T \right) + q$$

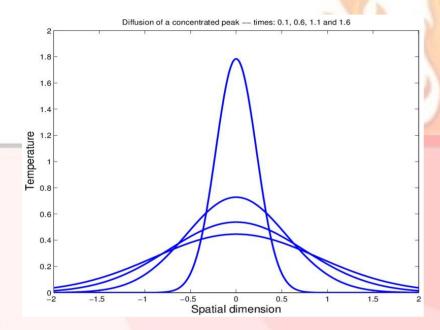
$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T$$

Diffusion equation: same for heat diffusion, flow in porous media (Darcy) or gas diffusion ...

 $=\frac{\lambda}{\rho C_m}$

 α

Diffusion of a peak of temperature



Gaussian shape (*i.e.* exponential) is typical for elementary solutions.

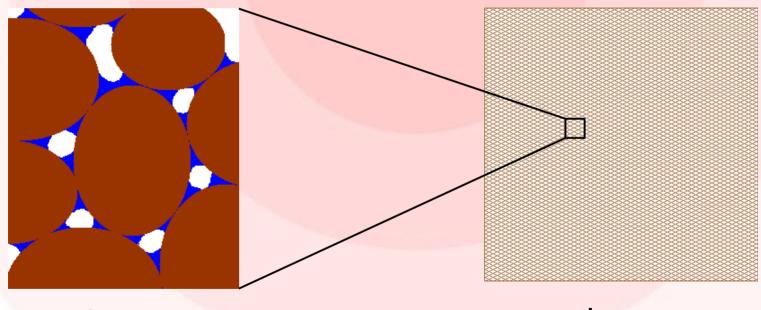
Diffusion process is more and more slower:

$$\tau_c = \frac{L^2}{\alpha}$$

Workshop MODNUM – 22 may 2013 – Beirut, Lebanon 3/20

Homogeneous / non-homogeneous material

- Homogeneous material: $\lambda = cst$
- Non-homogeneous: $\lambda \rightarrow \text{scalar function of the position}$
- Non isotropic behavior: λ is a diagonal matrix



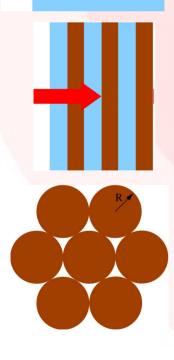
micro-scale: non-homogeneous $\lambda(x)$ macro-scale: homogeneous λ_e

 \rightarrow need of effective values in simulations

Workshop MODNUM – 22 may 2013 – Beirut, Lebanon 4/20

Effective properties?

• easy to compute for density (ρ) and heat capacity (C_p) : extensive



 λ_e : harmonic mean

General case: experimental measurement (not so easy!)

λ_e : some models available (*e.g.* Kunii & Smith, 1960, for compact spheres)

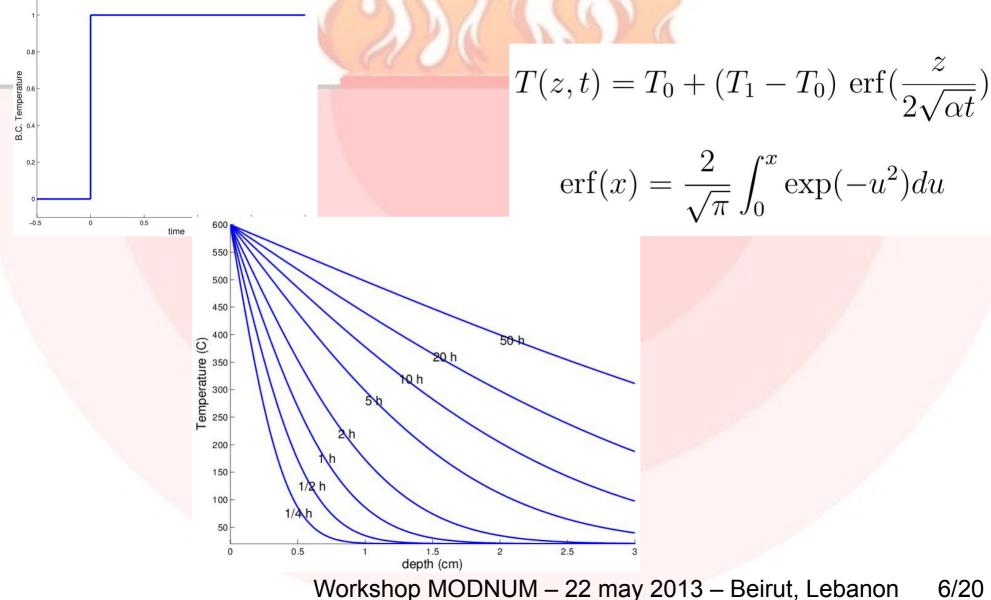
Workshop MODNUM – 22 may 2013 – Beirut, Lebanon 5/20

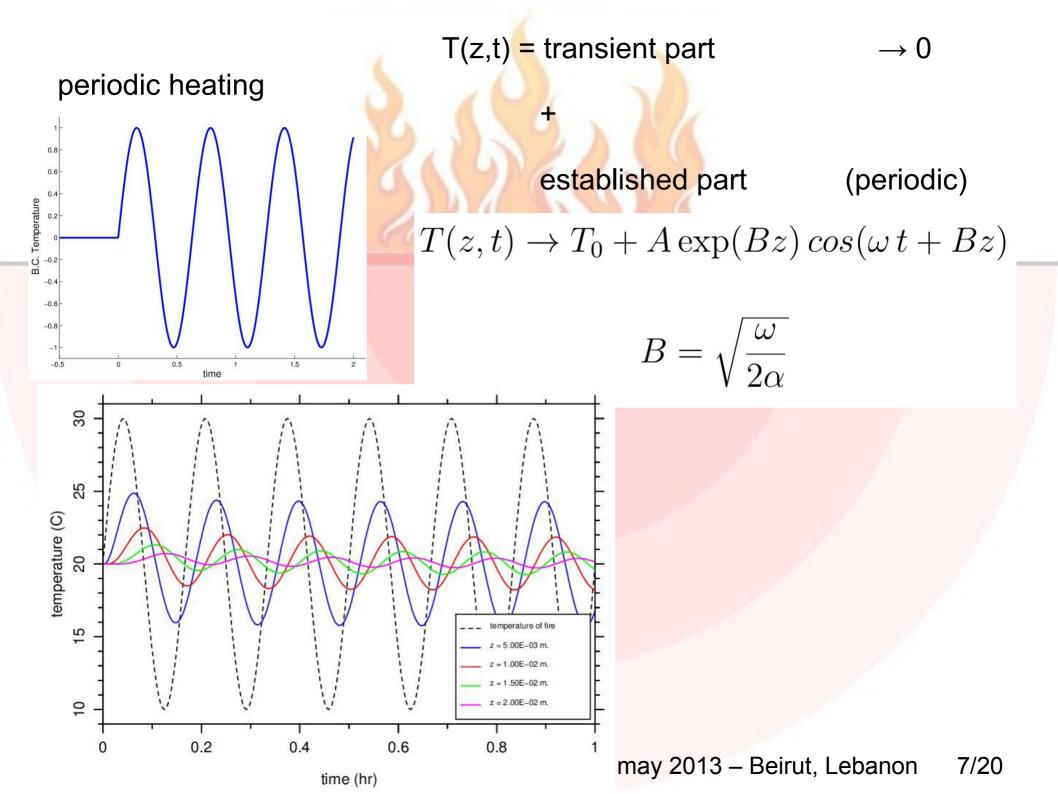
Analytical solutions: two different B.Cs.

sudden heating

(close to the archaeological fire)

6/20





Laloy & Massard method (1)

- Laloy & Massard (1984) → archaeological fires
- find diffusivity (α) by measuring transient temperatures only (sudden heating)
- isotherms curves must be plane (1D solution)
- semi-infinite medium
- easy to apply (excel sheet) but approximation

Laloy & Massard method (2) $\exp(-2x^2) \le \exp(x)^2 \le \exp(-x^2)$

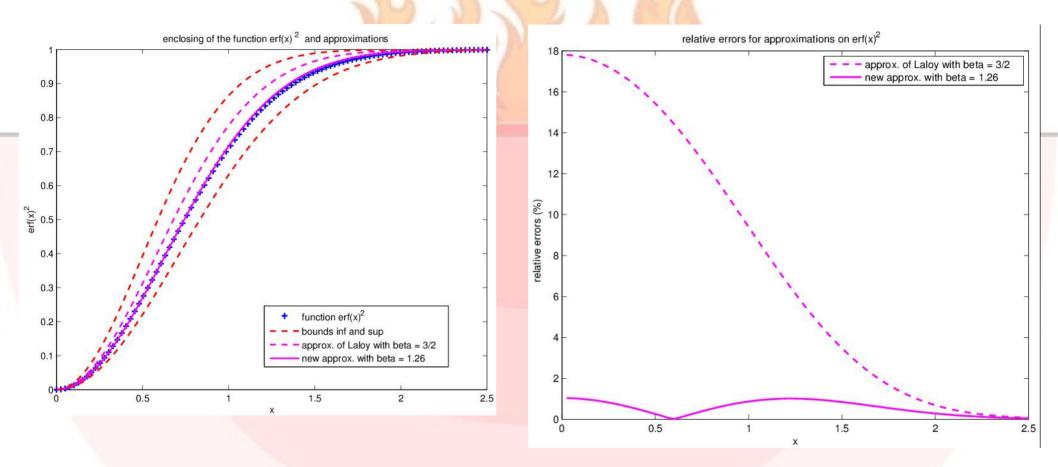
Laloy and Massard initial approximation:

$$\operatorname{erf}(x)^2 \approx \exp(-\frac{3}{2}x^2)$$

But this can be greatly improved: (see results)

$$\operatorname{erf}(x)^2 \approx \exp(-1.26x^2)$$

Laloy & Massard method (3)

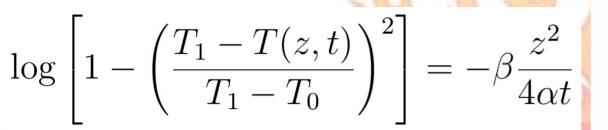


Initially, synthetic data (from numerical simulation) : 18 % relative error

New math. Approx \rightarrow 1 % relative error

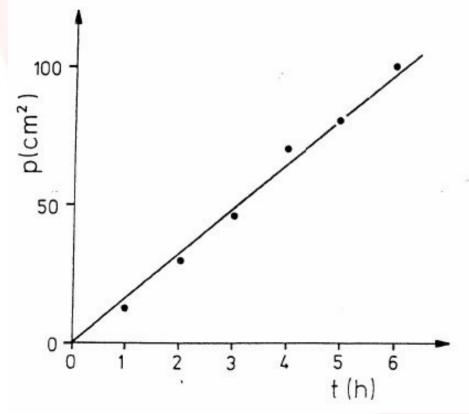
Workshop MODNUM – 22 may 2013 – Beirut, Lebanon 10/20

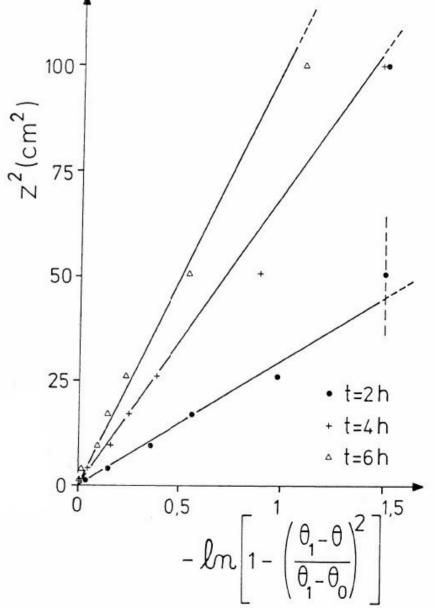
Laloy & Massard method (4)



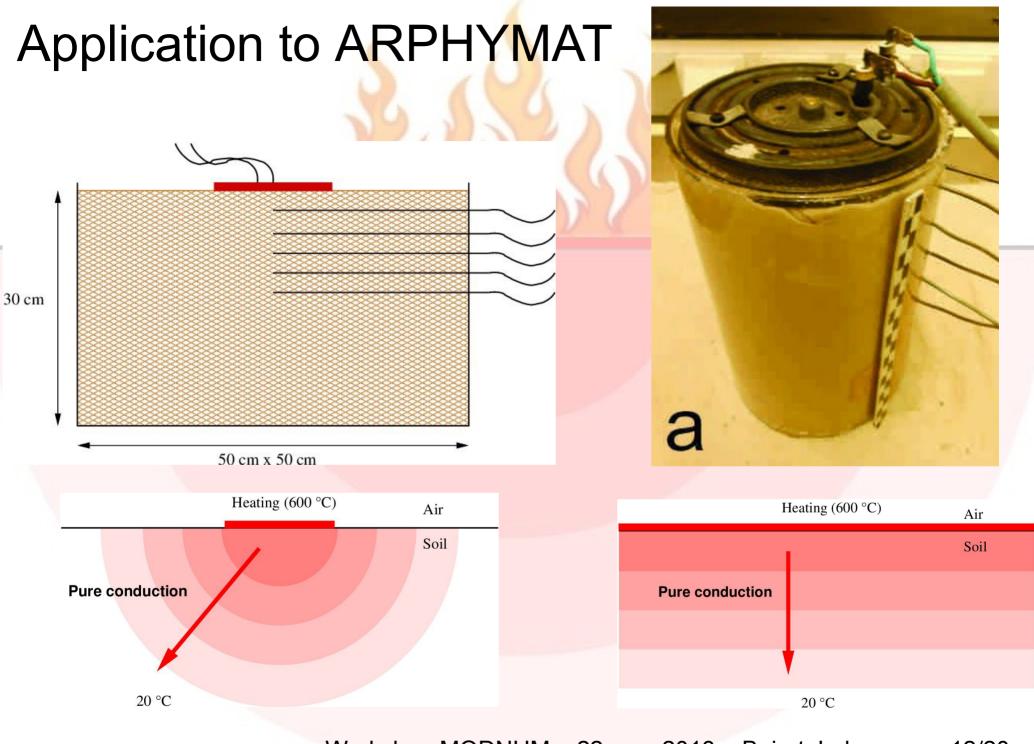
 $\beta = 1.26$

slope p prop. to $(4/\beta) \alpha t$ –



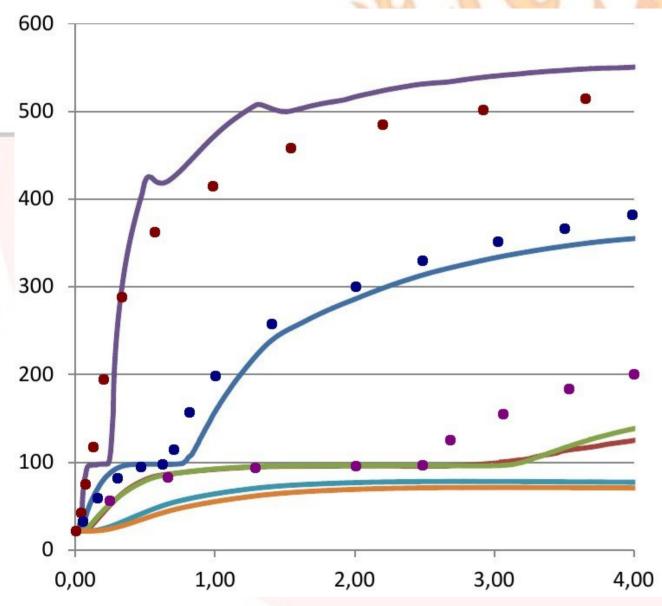


DNUM – 22 may 2013 – Beirut, Lebanon 11/20



Workshop MODNUM – 22 may 2013 – Beirut, Lebanon 12/20

Comparison between experiments and simulations



even for dry sand, comparison is not good!

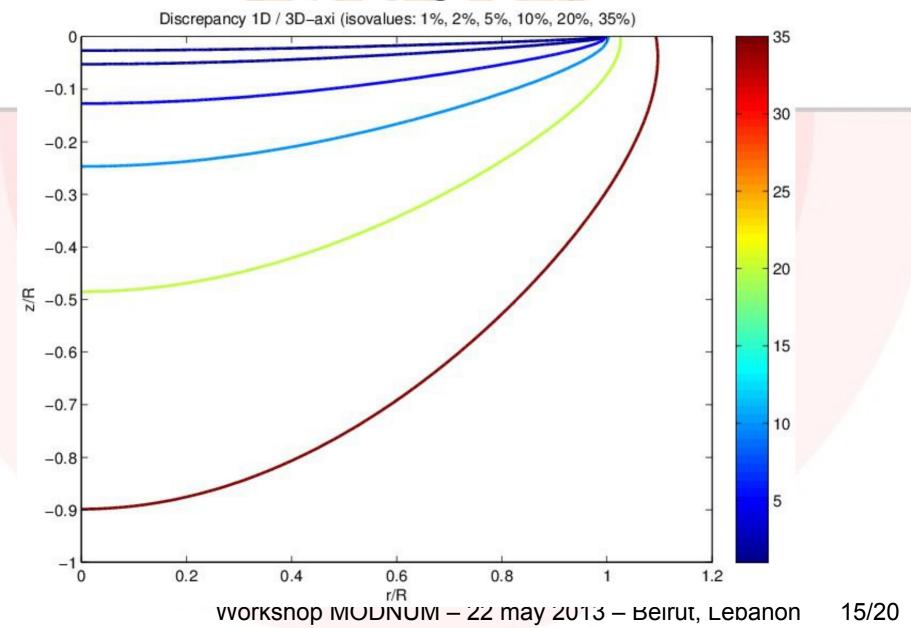
 \rightarrow looking for better diffusivity values (α)

Workshop MODNUM – 22 may 2013 – Beirut, Lebanon 13/20

Errors' sources in applying the Laloy & Massard method

- isotherms not parallel in the big setup
- even for the small setup, sides are not well isolated
- temperature of the plate (B.C.) is not sudden (must wait 10 to 20 minutes to reach the imposed temperature)
- boxes have finite depth (side effect)

Validity of the 1D approx. for the big setup



New method for the determination of α

- periodic B.C. $(z=0) \rightarrow T_0(t)$
- at least one sensor (e.g. $z=z_1$) $\rightarrow T_1(t)$
- use Discrete Fourier Transform (on both signals)
- get amplitude A(f) = 2 abs(c) \rightarrow max. amplitude A₀ and A₁

$$\frac{A_1}{A_0} = \exp\left[\sqrt{\frac{\omega}{2\alpha}}(z_1 - z_0)\right]$$

Workshop MODNUM – 22 may 2013 – Beirut, Lebanon 16/20

Advantages of this new method

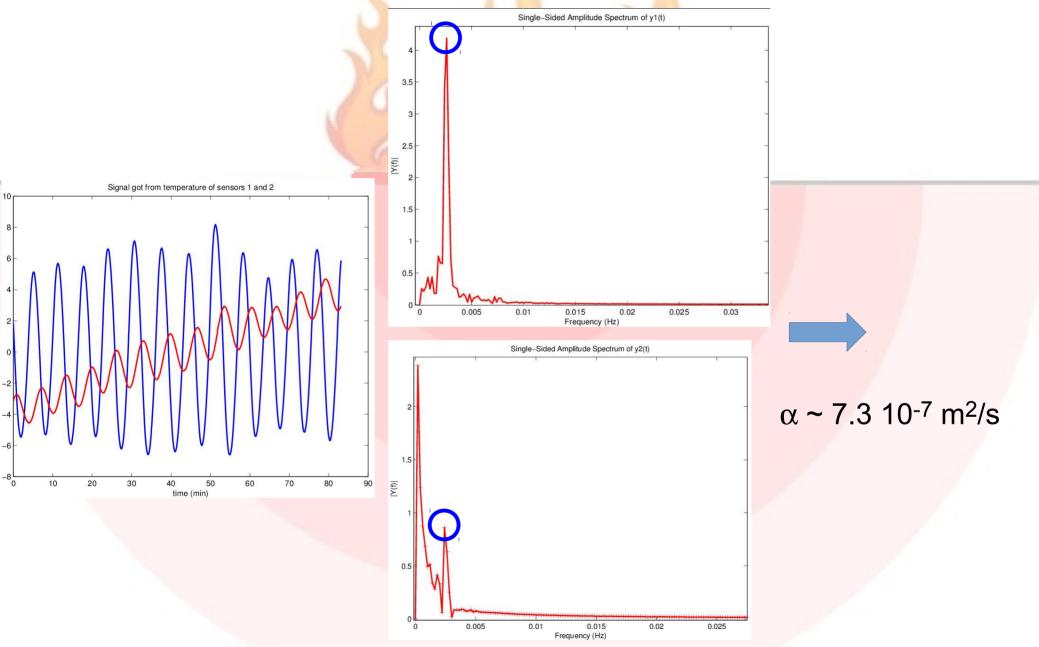
- repeated experiments for different values of T0 → α = function(T)
 i.e. diffusivity depends on temperature
- choice of pulsation ω: optimal way?
 - small value of $\omega \rightarrow$ better precision in T
 - large value of $\omega \rightarrow$ avoid side effect at the bottom
- no need to reach the established region, thanks to the linearity of the heat equation (see next slide)

Example of application



Workshop MODNUM – 22 may 2013 – Beirut, Lebanon 18/20

Example of application



Workshop MODNUM – 22 may 2013 – Beirut, Lebanon 19/20

Conclusion and Perspectives

- deep knowledge of physical processes is required to understand the difficulties in experimental methods. (making good experiments is hard)
- numerical computations lighten the whole process, validate some assumptions and predict the order of experimental uncertainties.
- analytical solutions (*i.e.* exact mathematical solutions) are always a "plus" in deriving a new method.
- we plan to use the new periodic B.C. in the determination of diffusivity.
- we seek an analytical, closed form, solution for the 3D-axi, in oblate spheroidal coordinates, for the periodic B.C. case.